fossilesque@mander.xyzM to Science Memes@mander.xyzEnglish · 9 months agofunny title goes heremander.xyzimagemessage-square9fedilinkarrow-up1138arrow-down166
arrow-up172arrow-down1imagefunny title goes heremander.xyzfossilesque@mander.xyzM to Science Memes@mander.xyzEnglish · 9 months agomessage-square9fedilink
minus-squareUsernamealreadyinuse@lemmy.worldlinkfedilinkEnglisharrow-up2·edit-29 months agoNo, copilot solve this test Answer: To solve the expression ( e{\int_01 x^2+x+1 , dx} ), we first need to calculate the integral of ( x^2+x+1 ) from 0 to 1. The integral of ( x^2+x+1 ) is: [ \int x^2+x+1 , dx = \frac{x^3}{3} + \frac{x^2}{2} + x + C ] Evaluating this from 0 to 1 gives us: [ \left[ \frac{x^3}{3} + \frac{x^2}{2} + x \right]_0^1 = \left( \frac{1}{3} + \frac{1}{2} + 1 \right) - \left( 0 + 0 + 0 \right) = \frac{11}{6} ] Now, we raise ( e ) to the power of this result: [ e^{\frac{11}{6}} ] This is the solution to the given expression. If you need a numerical approximation, ( e^{\frac{11}{6}} ) is approximately 4.953.
No, copilot solve this test
Answer:
To solve the expression ( e{\int_01 x^2+x+1 , dx} ), we first need to calculate the integral of ( x^2+x+1 ) from 0 to 1.
The integral of ( x^2+x+1 ) is: [ \int x^2+x+1 , dx = \frac{x^3}{3} + \frac{x^2}{2} + x + C ]
Evaluating this from 0 to 1 gives us: [ \left[ \frac{x^3}{3} + \frac{x^2}{2} + x \right]_0^1 = \left( \frac{1}{3} + \frac{1}{2} + 1 \right) - \left( 0 + 0 + 0 \right) = \frac{11}{6} ]
Now, we raise ( e ) to the power of this result: [ e^{\frac{11}{6}} ]
This is the solution to the given expression. If you need a numerical approximation, ( e^{\frac{11}{6}} ) is approximately 4.953.